Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diabetes ; 72(12): 1751-1765, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37699387

RESUMEN

Caspases are cysteine-aspartic proteases that were initially discovered to play a role in apoptosis. However, caspase 8, in particular, also has additional nonapoptotic roles, such as in inflammation. Adipocyte cell death and inflammation are hypothesized to be initiating pathogenic factors in type 2 diabetes. Here, we examined the pleiotropic role of caspase 8 in adipocytes and obesity-associated insulin resistance. Caspase 8 expression was increased in adipocytes from mice and humans with obesity and insulin resistance. Treatment of 3T3-L1 adipocytes with caspase 8 inhibitor Z-IETD-FMK decreased both death receptor-mediated signaling and targets of nuclear factor κ-light-chain-enhancer of activated B (NF-κB) signaling. We generated novel adipose tissue and adipocyte-specific caspase 8 knockout mice (aP2Casp8-/- and adipoqCasp8-/-). Both males and females had improved glucose tolerance in the setting of high-fat diet (HFD) feeding. Knockout mice also gained less weight on HFD, with decreased adiposity, adipocyte size, and hepatic steatosis. These mice had decreased adipose tissue inflammation and decreased activation of canonical and noncanonical NF-κB signaling. Furthermore, they demonstrated increased energy expenditure, core body temperature, and UCP1 expression. Adipocyte-specific activation of Ikbkb or housing mice at thermoneutrality attenuated improvements in glucose tolerance. These data demonstrate an important role for caspase 8 in mediating adipocyte cell death and inflammation to regulate glucose and energy homeostasis. ARTICLE HIGHLIGHTS: Caspase 8 is increased in adipocytes from mice and humans with obesity and insulin resistance. Knockdown of caspase 8 in adipocytes protects mice from glucose intolerance and weight gain on a high-fat diet. Knockdown of caspase 8 decreases Fas signaling, as well as canonical and noncanonical nuclear factor κ-light-chain-enhancer of activated B (NF-κB) signaling in adipose tissue. Improved glucose tolerance occurs via reduced activation of NF-κB signaling and via induction of UCP1 in adipocytes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Masculino , Femenino , Animales , Ratones , FN-kappa B/metabolismo , Resistencia a la Insulina/genética , Caspasa 8/genética , Caspasa 8/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ratones Noqueados , Adipocitos/metabolismo , Obesidad/genética , Obesidad/metabolismo , Dieta Alta en Grasa/efectos adversos , Inflamación/metabolismo , Glucosa/metabolismo , Apoptosis/genética
2.
Mol Metab ; 66: 101594, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36165813

RESUMEN

OBJECTIVE: Adipose tissue is a very dynamic metabolic organ that plays an essential role in regulating whole-body glucose homeostasis. Dysfunctional adipose tissue hypertrophy with obesity is associated with fibrosis and type 2 diabetes. Yes-associated protein 1 (YAP) is a transcription cofactor important in the Hippo signaling pathway. However, the role of YAP in adipose tissue and glucose homeostasis is unknown. METHODS: To study the role of YAP with metabolic stress, we assessed how increased weight and insulin resistance impact YAP in humans and mouse models. To further investigate the in vivo role of YAP specifically in adipose tissue and glucose homeostasis, we developed adipose tissue-specific YAP knockout mice and placed them on either chow or high fat diet (HFD) for 12-14 weeks. To further study the direct role of YAP in adipocytes we used 3T3-L1 cells. RESULTS: We found that YAP protein levels increase in adipose tissue from humans with type 2 diabetes and mouse models of diet-induced obesity and insulin resistance. This suggests that YAP signaling may contribute to adipocyte dysfunction and insulin resistance under metabolic stress conditions. On an HFD, adipose tissue YAP knockout mice had improved glucose tolerance compared to littermate controls. Perigonadal fat pad weight was also decreased in knockout animals, with smaller adipocyte size. Adipose tissue fibrosis and gene expression associated with fibrosis was decreased in vivo and in vitro in 3T3-L1 cells treated with a YAP inhibitor or siRNA. CONCLUSIONS: We show that YAP is increased in adipose tissue with weight gain and insulin resistance. Disruption of YAP in adipocytes prevents glucose intolerance and adipose tissue fibrosis, suggesting that YAP plays an important role in regulating adipose tissue and glucose homeostasis with metabolic stress.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Ratones , Animales , Resistencia a la Insulina/fisiología , Diabetes Mellitus Tipo 2/metabolismo , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Dieta Alta en Grasa/efectos adversos , Obesidad/metabolismo , Aumento de Peso , Homeostasis , Fibrosis , Ratones Noqueados , Glucosa/metabolismo
3.
Sci Rep ; 7(1): 7653, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28794431

RESUMEN

During obesity, macrophages can infiltrate metabolic tissues, and contribute to chronic low-grade inflammation, and mediate insulin resistance and diabetes. Recent studies have elucidated the metabolic role of JAK2, a key mediator downstream of various cytokines and growth factors. Our study addresses the essential role of macrophage JAK2 in the pathogenesis to obesity-associated inflammation and insulin resistance. During high-fat diet (HFD) feeding, macrophage-specific JAK2 knockout (M-JAK2-/-) mice gained less body weight compared to wildtype littermate control (M-JAK2+/+) mice and were protected from HFD-induced systemic insulin resistance. Histological analysis revealed smaller adipocytes and qPCR analysis showed upregulated expression of some adipogenesis markers in visceral adipose tissue (VAT) of HFD-fed M-JAK2-/- mice. There were decreased crown-like structures in VAT along with reduced mRNA expression of some macrophage markers and chemokines in liver and VAT of HFD-fed M-JAK2-/- mice. Peritoneal macrophages from M-JAK2-/- mice and Jak2 knockdown in macrophage cell line RAW 264.7 also showed lower levels of chemokine expression and reduced phosphorylated STAT3. However, leptin-dependent effects on augmenting chemokine expression in RAW 264.7 cells did not require JAK2. Collectively, our findings show that macrophage JAK2 deficiency improves systemic insulin sensitivity and reduces inflammation in VAT and liver in response to metabolic stress.


Asunto(s)
Dieta Alta en Grasa , Inflamación/etiología , Janus Quinasa 2/deficiencia , Macrófagos/metabolismo , Adipocitos/metabolismo , Adipocitos/patología , Animales , Quimiocinas/genética , Quimiocinas/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Expresión Génica , Hipertrofia , Inflamación/metabolismo , Inflamación/patología , Resistencia a la Insulina/genética , Grasa Intraabdominal/metabolismo , Hígado/metabolismo , Macrófagos/inmunología , Masculino , Ratones , Ratones Noqueados , Células Mieloides/inmunología , Células Mieloides/metabolismo
4.
JCI Insight ; 2(14)2017 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-28724798

RESUMEN

Atherosclerosis is considered both a metabolic and inflammatory disease; however, the specific tissue and signaling molecules that instigate and propagate this disease remain unclear. The liver is a central site of inflammation and lipid metabolism that is critical for atherosclerosis, and JAK2 is a key mediator of inflammation and, more recently, of hepatic lipid metabolism. However, precise effects of hepatic Jak2 on atherosclerosis remain unknown. We show here that hepatic Jak2 deficiency in atherosclerosis-prone mouse models exhibited accelerated atherosclerosis with increased plaque macrophages and decreased plaque smooth muscle cell content. JAK2's essential role in growth hormone signalling in liver that resulted in reduced IGF-1 with hepatic Jak2 deficiency played a causal role in exacerbating atherosclerosis. As such, restoring IGF-1 either pharmacologically or genetically attenuated atherosclerotic burden. Together, our data show hepatic Jak2 to play a protective role in atherogenesis through actions mediated by circulating IGF-1 and, to our knowledge, provide a novel liver-centric mechanism in atheroprotection.

5.
Nat Commun ; 8: 14360, 2017 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-28165007

RESUMEN

Focal adhesion kinase (FAK) plays a central role in integrin signalling, which regulates growth and survival of tumours. Here we show that FAK protein levels are increased in adipose tissue of insulin-resistant obese mice and humans. Disruption of adipocyte FAK in mice or in 3T3 L1 cells decreases adipocyte survival. Adipocyte-specific FAK knockout mice display impaired adipose tissue expansion and insulin resistance on prolonged metabolic stress from a high-fat diet or when crossed on an obese db/db or ob/ob genetic background. Treatment of these mice with a PPARγ agonist does not restore adiposity or improve insulin sensitivity. In contrast, inhibition of apoptosis, either genetically or pharmacologically, attenuates adipocyte death, restores normal adiposity and improves insulin sensitivity. Together, these results demonstrate that FAK is required for adipocyte survival and maintenance of insulin sensitivity, particularly in the context of adipose tissue expansion as a result of caloric excess.


Asunto(s)
Adipocitos/fisiología , Quinasa 1 de Adhesión Focal/metabolismo , Resistencia a la Insulina/fisiología , Obesidad/metabolismo , Células 3T3-L1 , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Tejido Adiposo/fisiopatología , Adiposidad/efectos de los fármacos , Adiposidad/genética , Adulto , Animales , Apoptosis/efectos de los fármacos , Supervivencia Celular , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Femenino , Quinasa 1 de Adhesión Focal/genética , Humanos , Hipoglucemiantes/farmacología , Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Persona de Mediana Edad , Obesidad/etiología , Obesidad/fisiopatología , PPAR gamma/agonistas , Cultivo Primario de Células , Rosiglitazona , Transducción de Señal/fisiología , Tiazolidinedionas/farmacología
6.
J Biol Chem ; 292(9): 3789-3799, 2017 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-28100771

RESUMEN

Hepatocellular carcinoma is an end-stage complication of non-alcoholic fatty liver disease (NAFLD). Inflammation plays a critical role in the progression of non-alcoholic fatty liver disease and the development of hepatocellular carcinoma. However, whether steatosis per se promotes liver cancer, and the molecular mechanisms that control the progression in this disease spectrum remain largely elusive. The Janus kinase signal transducers and activators of transcription (JAK-STAT) pathway mediates signal transduction by numerous cytokines that regulate inflammation and may contribute to hepatocarcinogenesis. Mice with hepatocyte-specific deletion of JAK2 (L-JAK2 KO) develop extensive fatty liver spontaneously. We show here that this simple steatosis was insufficient to drive carcinogenesis. In fact, L-JAK2 KO mice were markedly protected from chemically induced tumor formation. Using the methionine choline-deficient dietary model to induce steatohepatitis, we found that steatohepatitis development was completely arrested in L-JAK2 KO mice despite the presence of steatosis, suggesting that JAK2 is the critical factor required for inflammatory progression in the liver. In line with this, L-JAK2 KO mice exhibited attenuated inflammation after chemical carcinogen challenge. This was associated with increased hepatocyte apoptosis without elevated compensatory proliferation, thus thwarting expansion of transformed hepatocytes. Taken together, our findings identify an indispensable role of JAK2 in hepatocarcinogenesis through regulating critical inflammatory pathways. Targeting the JAK-STAT pathway may provide a novel therapeutic option for the treatment of hepatocellular carcinoma.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Neoplasias Hepáticas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Proliferación Celular , Hígado Graso/metabolismo , Eliminación de Gen , Hepatocitos/metabolismo , Inflamación , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
7.
Methods Mol Biol ; 1388: 75-91, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27033072

RESUMEN

PTEN plays an important role in diabetes pathogenesis not only as a key negative regulator of the PI3K/Akt pathway required for insulin action, but also via its role in other cell processes required to maintain metabolic homeostasis. We describe the generation of tissue-specific PTEN knockout mice and models of both type 1 and type 2 diabetes, which we have found useful for the study of diabetes pathogenesis. We also outline common methods suitable for the characterization of glucose homeostasis in rodent models, including techniques to measure beta cell function and insulin sensitivity.


Asunto(s)
Diabetes Mellitus/metabolismo , Glucosa/metabolismo , Fosfohidrolasa PTEN/metabolismo , Animales , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Homeostasis , Humanos , Insulina/metabolismo , Ratones
8.
Diabetologia ; 59(1): 187-196, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26515423

RESUMEN

AIMS/HYPOTHESIS: Non-shivering thermogenesis in adipose tissue can be activated by excessive energy intake or following cold exposure. The molecular mechanisms regulating this activation have not been fully elucidated. The Janus kinase (JAK) - signal transducer and activator of transcription (STAT) pathway mediates the signal transduction of numerous hormones and growth factors that regulate adipose tissue development and function, and may play a role in adaptive thermogenesis. METHODS: We analysed mRNA and protein levels of uncoupling protein 1 (UCP1) and JAK2 in different adipose depots in response to metabolic and thermal stress. The in vivo role of JAK2 in adaptive thermogenesis was examined using mice with adipocyte-specific Jak2 deficiency (A-Jak2 KO). RESULTS: We show in murine brown adipose tissue (BAT) that JAK2 is upregulated together with UCP1 in response to high-fat diet (HFD) feeding and cold exposure. In contrast to white adipose tissue, where JAK2 was dispensable for UCP1 induction, we identified an essential role for BAT JAK2 in diet- and cold-induced thermogenesis via mediating the thermogenic response to ß-adrenergic stimulation. Accordingly, A-Jak2 KO mice were unable to upregulate BAT UCP1 following a HFD or after cold exposure. Therefore, A-Jak2 KO mice were cold intolerant and susceptible to HFD-induced obesity and diabetes. CONCLUSIONS/INTERPRETATION: Taken together, our results suggest that JAK2 plays a critical role in BAT function and adaptive thermogenesis. Targeting the JAK-STAT pathway may be a novel therapeutic approach for the treatment of obesity and related metabolic disorders.


Asunto(s)
Tejido Adiposo Pardo/fisiología , Janus Quinasa 2/metabolismo , Termogénesis , Adipocitos/citología , Adipogénesis , Tejido Adiposo Blanco/fisiología , Adiposidad , Animales , Dieta Alta en Grasa , Femenino , Insulina/fisiología , Canales Iónicos/fisiología , Janus Quinasa 1/fisiología , Ratones , Ratones Noqueados , Proteínas Mitocondriales/fisiología , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , Factor de Transcripción STAT1/fisiología , Transducción de Señal , Proteína Desacopladora 1 , Regulación hacia Arriba
9.
Nat Commun ; 6: 7415, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26077864

RESUMEN

Reactive oxygen species (ROS) have been linked to a wide variety of pathologies, including obesity and diabetes, but ROS also act as endogenous signalling molecules, regulating numerous biological processes. DJ-1 is one of the most evolutionarily conserved proteins across species, and mutations in DJ-1 have been linked to some cases of Parkinson's disease. Here we show that DJ-1 maintains cellular metabolic homeostasis via modulating ROS levels in murine skeletal muscles, revealing a role of DJ-1 in maintaining efficient fuel utilization. We demonstrate that, in the absence of DJ-1, ROS uncouple mitochondrial respiration and activate AMP-activated protein kinase, which triggers Warburg-like metabolic reprogramming in muscle cells. Accordingly, DJ-1 knockout mice exhibit higher energy expenditure and are protected from obesity, insulin resistance and diabetes in the setting of fuel surplus. Our data suggest that promoting mitochondrial uncoupling may be a potential strategy for the treatment of obesity-associated metabolic disorders.


Asunto(s)
Metabolismo Energético/genética , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Mioblastos Esqueléticos/metabolismo , Proteínas Oncogénicas/genética , Peroxirredoxinas/genética , Especies Reactivas de Oxígeno/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Línea Celular , Supervivencia Celular , Diabetes Mellitus/genética , Dieta Alta en Grasa , Glucosa/metabolismo , Glucólisis/genética , Homeostasis/genética , Immunoblotting , Resistencia a la Insulina/genética , Ratones , Ratones Noqueados , Fibras Musculares Esqueléticas/metabolismo , Obesidad/genética , Estrés Oxidativo , Consumo de Oxígeno , Proteína Desglicasa DJ-1
10.
Cell Metab ; 21(4): 527-42, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25863246

RESUMEN

Obesity has reached epidemic proportions, but little is known about its influence on the intestinal immune system. Here we show that the gut immune system is altered during high-fat diet (HFD) feeding and is a functional regulator of obesity-related insulin resistance (IR) that can be exploited therapeutically. Obesity induces a chronic phenotypic pro-inflammatory shift in bowel lamina propria immune cell populations. Reduction of the gut immune system, using beta7 integrin-deficient mice (Beta7(null)), decreases HFD-induced IR. Treatment of wild-type HFD C57BL/6 mice with the local gut anti-inflammatory, 5-aminosalicyclic acid (5-ASA), reverses bowel inflammation and improves metabolic parameters. These beneficial effects are dependent on adaptive and gut immunity and are associated with reduced gut permeability and endotoxemia, decreased visceral adipose tissue inflammation, and improved antigen-specific tolerance to luminal antigens. Thus, the mucosal immune system affects multiple pathways associated with systemic IR and represents a novel therapeutic target in this disease.


Asunto(s)
Antiinflamatorios/farmacología , Tracto Gastrointestinal/inmunología , Inmunidad Mucosa/inmunología , Resistencia a la Insulina/inmunología , Obesidad/inmunología , Animales , Western Blotting , Citocinas/sangre , Dieta Alta en Grasa/efectos adversos , Citometría de Flujo , Tracto Gastrointestinal/efectos de los fármacos , Técnicas Histológicas , Inmunohistoquímica , Cadenas beta de Integrinas/metabolismo , Mesalamina/farmacología , Ratones , Ratones Endogámicos C57BL , Membrana Mucosa/citología , Membrana Mucosa/inmunología
11.
Diabetes ; 64(1): 147-57, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25092678

RESUMEN

An aberrant increase in circulating catabolic hormone glucagon contributes to type 2 diabetes pathogenesis. However, mechanisms regulating glucagon secretion and α-cell mass are not well understood. In this study, we aimed to demonstrate that phosphatidylinositol 3-kinase (PI3K) signaling is an important regulator of α-cell function. Mice with deletion of PTEN, a negative regulator of this pathway, in α-cells show reduced circulating glucagon levels and attenuated l-arginine-stimulated glucagon secretion both in vivo and in vitro. This hypoglucagonemic state is maintained after high-fat-diet feeding, leading to reduced expression of hepatic glycogenolytic and gluconeogenic genes. These beneficial effects protected high-fat diet-fed mice against hyperglycemia and insulin resistance. The data demonstrate an inhibitory role of PI3K signaling on α-cell function and provide experimental evidence for enhancing α-cell PI3K signaling for diabetes treatment.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Glucagón/fisiología , Glucagón/sangre , Resistencia a la Insulina/fisiología , Fosfohidrolasa PTEN/genética , Animales , Arginina/metabolismo , Diabetes Mellitus Tipo 2/genética , Dieta Alta en Grasa , Femenino , Glucagón/metabolismo , Células Secretoras de Glucagón/citología , Células Secretoras de Glucagón/metabolismo , Hiperglucemia/genética , Hiperglucemia/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/fisiología , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , ARN Interferente Pequeño/genética , Transducción de Señal/fisiología
12.
Diabetes ; 64(1): 90-103, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25048196

RESUMEN

Obesity-related insulin resistance is associated with an influx of pathogenic T cells into visceral adipose tissue (VAT), but the mechanisms regulating lymphocyte balance in such tissues are unknown. Here we describe an important role for the immune cytotoxic effector molecule perforin in regulating this process. Perforin-deficient mice (Prf1(null)) show early increased body weight and adiposity, glucose intolerance, and insulin resistance when placed on high-fat diet (HFD). Regulatory effects of perforin on glucose tolerance are mechanistically linked to the control of T-cell proliferation and cytokine production in inflamed VAT. HFD-fed Prf1(null) mice have increased accumulation of proinflammatory IFN-γ-producing CD4(+) and CD8(+) T cells and M1-polarized macrophages in VAT. CD8(+) T cells from the VAT of Prf1(null) mice have increased proliferation and impaired early apoptosis, suggesting a role for perforin in the regulation of T-cell turnover during HFD feeding. Transfer of CD8(+) T cells from Prf1(null) mice into CD8-deficient mice (CD8(null)) resulted in worsening of metabolic parameters compared with wild-type donors. Improved metabolic parameters in HFD natural killer (NK) cell-deficient mice (NK(null)) ruled out a role for NK cells as a single source of perforin in regulating glucose homeostasis. The findings support the importance of T-cell function in insulin resistance and suggest that modulation of lymphocyte homeostasis in inflamed VAT is one possible avenue for therapeutic intervention.


Asunto(s)
Intolerancia a la Glucosa/inmunología , Resistencia a la Insulina/inmunología , Grasa Intraabdominal/inmunología , Obesidad/inmunología , Paniculitis/inmunología , Perforina/inmunología , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/inmunología , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Línea Celular , Dieta Alta en Grasa , Células Madre Embrionarias/citología , Femenino , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Insulina/metabolismo , Grasa Intraabdominal/metabolismo , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/genética , Obesidad/metabolismo , Paniculitis/genética , Paniculitis/metabolismo , Perforina/genética , Perforina/metabolismo , Bazo/citología , Bazo/inmunología
13.
Diabetologia ; 57(12): 2555-65, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25249236

RESUMEN

AIMS/HYPOTHESIS: Diabetes mellitus is characterised by beta cell loss and alpha cell expansion. Analogues of glucagon-like peptide-1 (GLP-1) are used therapeutically to antagonise these processes; thus, we hypothesised that the related cell cycle regulators retinoblastoma protein (Rb) and p107 were involved in GLP-1 action. METHODS: We used small interfering RNA and adenoviruses to manipulate Rb and p107 expression in insulinoma and alpha-TC cell lines. In vivo we examined pancreas-specific Rb knockout, whole-body p107 knockout and Rb/p107 double-knockout mice. RESULTS: Rb, but not p107, was downregulated in response to the GLP-1 analogue, exendin-4, in both alpha and beta cells. Intriguingly, this resulted in opposite outcomes of cell cycle arrest in alpha cells but proliferation in beta cells. Overexpression of Rb in alpha and beta cells abolished or attenuated the effects of exendin-4 supporting the important role of Rb in GLP-1 modulation of cell cycling. Similarly, in vivo, Rb, but not p107, deficiency was required for the beta cell proliferative response to exendin-4. Consistent with this finding, Rb, but not p107, was suppressed in islets from humans with diabetes, suggesting the importance of Rb regulation for the compensatory proliferation that occurs under insulin resistant conditions. Finally, while p107 alone did not have an essential role in islet homeostasis, when combined with Rb deletion, its absence potentiated apoptosis of both alpha and beta cells resulting in glucose intolerance and diminished islet mass with ageing. CONCLUSIONS/INTERPRETATION: We found a central role of Rb in the dual effects of GLP-1 in alpha and beta cells. Our findings highlight unique contributions of individual Rb family members to islet cell proliferation and survival.


Asunto(s)
Ciclo Celular/fisiología , Supervivencia Celular/fisiología , Péptido 1 Similar al Glucagón/metabolismo , Células Secretoras de Glucagón/metabolismo , Células Secretoras de Insulina/metabolismo , Proteína de Retinoblastoma/metabolismo , Proteína p107 Similar a la del Retinoblastoma/metabolismo , Animales , Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Exenatida , Células Secretoras de Glucagón/efectos de los fármacos , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Humanos , Células Secretoras de Insulina/efectos de los fármacos , Ratones , Ratones Noqueados , Péptidos/farmacología , Proteína de Retinoblastoma/genética , Proteína p107 Similar a la del Retinoblastoma/genética , Ponzoñas/farmacología
14.
Diabetologia ; 57(9): 1889-98, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24981769

RESUMEN

AIMS/HYPOTHESIS: Diabetes mellitus represents a significant burden on the health of the global population. Both type 1 and type 2 diabetes share a common feature of a reduction in functional beta cell mass. A newly discovered ubiquitination molecule HECT, UBA and WWE domain containing 1, E3 ubiquitin protein ligase (HUWE1 [also known as MULE or ARF-BP1]) is a critical regulator of p53-dependent apoptosis. However, its role in islet homeostasis is not entirely clear. METHODS: We generated mice with pancreas-specific deletion of Huwe1 using a Cre-loxP recombination system driven by the Pdx1 promoter (Pdx1cre (+) Huwe1 (fl/fl)) to assess the in vivo role of HUWE1 in the pancreas. RESULTS: Targeted deletion of Huwe1 in the pancreas preferentially activated p53-mediated beta cell apoptosis, leading to reduced beta cell mass and diminished insulin exocytosis. These defects were aggravated by ageing, with progressive further decline in insulin secretion and glucose homeostasis in older mice. Intriguingly, Huwe1 deletion provided protection against genotoxicity, such that Pdx1cre (+) Huwe1 (fl/fl) mice were resistant to multiple-low-dose-streptozotocin-induced beta cell apoptosis and diabetes. CONCLUSION/INTERPRETATION: HUWE1 expression in the pancreas is essential in determining beta cell mass. Furthermore, HUWE1 demonstrated divergent roles in regulating beta cell apoptosis depending on physiological or genotoxic conditions.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Páncreas/metabolismo , Páncreas/patología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Mutantes , Proteínas Supresoras de Tumor , Ubiquitina-Proteína Ligasas/genética
15.
Nat Med ; 20(5): 484-92, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24747746

RESUMEN

Inflammation has a critical role in the development of insulin resistance. Recent evidence points to a contribution by the central nervous system in the modulation of peripheral inflammation through the anti-inflammatory reflex. However, the importance of this phenomenon remains elusive in type 2 diabetes pathogenesis. Here we show that rat insulin-2 promoter (Rip)-mediated deletion of Pten, a gene encoding a negative regulator of PI3K signaling, led to activation of the cholinergic anti-inflammatory pathway that is mediated by M2 activated macrophages in peripheral tissues. As such, Rip-cre(+) Pten(flox/flox) mice showed lower systemic inflammation and greater insulin sensitivity under basal conditions compared to littermate controls, which were abolished when the mice were treated with an acetylcholine receptor antagonist or when macrophages were depleted. After feeding with a high-fat diet, the Pten-deleted mice remained markedly insulin sensitive, which correlated with massive subcutaneous fat expansion. They also exhibited more adipogenesis with M2 macrophage infiltration, both of which were abolished after disruption of the anti-inflammatory efferent pathway by left vagotomy. In summary, we show that Pten expression in Rip(+) neurons has a critical role in diabetes pathogenesis through mediating the anti-inflammatory reflex.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Inflamación/metabolismo , Insulina/genética , Fosfohidrolasa PTEN/genética , Animales , Antiinflamatorios/administración & dosificación , Sistema Nervioso Central/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Dieta Alta en Grasa , Humanos , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Insulina/metabolismo , Resistencia a la Insulina/genética , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Fosfohidrolasa PTEN/metabolismo , Regiones Promotoras Genéticas , Ratas , Receptores Muscarínicos/administración & dosificación , Eliminación de Secuencia , Transducción de Señal
16.
Diabetologia ; 57(5): 1016-26, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24531222

RESUMEN

AIMS/HYPOTHESIS: The growing obesity epidemic necessitates a better understanding of adipocyte biology and its role in metabolism. The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway mediates signalling by numerous cytokines and hormones that regulate adipocyte function, illustrating the physiological importance of adipose JAK-STAT. The aim of this study was to investigate potential roles of adipocyte JAK2, an essential player in the JAK-STAT pathway, in adipocyte biology and metabolism. METHODS: We generated adipocyte-specific Jak2 knockout (A-Jak2 KO) mice using the Cre-loxP system with Cre expression driven by the Ap2 (also known as Fabp4) promoter. RESULTS: Starting at 2-3 months of age, male and female A-Jak2 KO mice gradually gained more body weight than control littermates primarily due to increased adiposity. This was associated with reduced energy expenditure in A-Jak2 KO mice. In perigonadal adipose tissue, the expression of numerous genes involved in lipid metabolism was differentially regulated. In addition, adipose tissue from A-Jak2 KO mice displayed impaired lipolysis in response to isoprenaline, growth hormone and leptin stimulation, suggesting that adipose JAK2 directly modulates the lipolytic program. Impaired lipid homeostasis was also associated with disrupted adipokine secretion. Accordingly, while glucose metabolism was normal at 2 months of age, by 5-6 months of age, A-Jak2 KO mice had whole-body insulin resistance. CONCLUSIONS/INTERPRETATION: Our results suggest that adipocyte JAK2 plays a critical role in the regulation of adipocyte biology and whole-body metabolism. Targeting of the JAK-STAT pathway could be a novel therapeutic option for the treatment of obesity and type 2 diabetes.


Asunto(s)
Adipocitos/metabolismo , Envejecimiento , Resistencia a la Insulina , Janus Quinasa 2/metabolismo , Lipólisis , Adipocitos/citología , Adipoquinas , Adiposidad , Animales , Composición Corporal , Peso Corporal , Citocinas/metabolismo , Femenino , Prueba de Tolerancia a la Glucosa , Masculino , Ratones , Ratones Noqueados , Obesidad , Regiones Promotoras Genéticas
17.
Endocrinology ; 154(10): 3652-9, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23885016

RESUMEN

The growing prevalence of obesity and diabetes necessitate a better understanding of the role of adipocyte biology in metabolism. Increasingly, erythropoietin (EPO) has been shown to have extraerythropoietic and cytoprotective roles. Exogenous administration has recently been shown to have beneficial effects on obesity and diabetes in mouse models and EPO can modulate adipogenesis and insulin signaling in 3T3-L1 adipocytes. However, its physiological role in adipocytes has not been identified. Using male and female mice with adipose tissue-specific knockdown of the EPO receptor, we determine that adipocyte EPO signaling is not essential for the maintenance of energy homeostasis or glucose metabolism. Adipose tissue-specific disruption of EPO receptor did not alter adipose tissue expansion, adipocyte morphology, insulin resistance, inflammation, or angiogenesis in vivo. In contrast to the pharmacological effects of EPO, we demonstrate that EPO signaling at physiological levels is not essential for adipose tissue regulation of metabolism.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Metabolismo Energético , Glucosa/metabolismo , Receptores de Eritropoyetina/metabolismo , Tejido Adiposo Pardo/irrigación sanguínea , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/inmunología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/irrigación sanguínea , Tejido Adiposo Blanco/citología , Tejido Adiposo Blanco/patología , Adiposidad , Adulto , Animales , Células Cultivadas , Diabetes Mellitus Tipo 2/inmunología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Dieta Alta en Grasa/efectos adversos , Femenino , Regulación de la Expresión Génica , Humanos , Resistencia a la Insulina , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Neovascularización Fisiológica , Obesidad/etiología , Obesidad/inmunología , Obesidad/metabolismo , Obesidad/patología , Receptores de Eritropoyetina/genética , Organismos Libres de Patógenos Específicos
18.
Diabetes ; 61(7): 1708-18, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22498697

RESUMEN

Focal adhesion kinase (FAK) acts as an adaptor at the focal contacts serving as a junction between the extracellular matrix and actin cytoskeleton. Actin dynamics is known as a determinant step in insulin secretion. Additionally, FAK has been shown to regulate insulin signaling. To investigate the essential physiological role of FAK in pancreatic ß-cells in vivo, we generated a transgenic mouse model using rat insulin promoter (RIP)-driven Cre-loxP recombination system to specifically delete FAK in pancreatic ß-cells. These RIPcre(+)fak(fl/fl) mice exhibited glucose intolerance without changes in insulin sensitivity. Reduced ß-cell viability and proliferation resulting in decreased ß-cell mass was observed in these mice, which was associated with attenuated insulin/Akt (also known as protein kinase B) and extracellular signal-related kinase 1/2 signaling and increased caspase 3 activation. FAK-deficient ß-cells exhibited impaired insulin secretion with normal glucose sensing and preserved Ca(2+) influx in response to glucose, but a reduced number of docked insulin granules and insulin exocytosis were found, which was associated with a decrease in focal proteins, paxillin and talin, and an impairment in actin depolymerization. This study is the first to show in vivo that FAK is critical for pancreatic ß-cell viability and function through regulation in insulin signaling, actin dynamics, and granule trafficking.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Resistencia a la Insulina , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animales , Calcio/metabolismo , Caspasa 3/biosíntesis , Supervivencia Celular , Exocitosis , Femenino , Quinasa 1 de Adhesión Focal/genética , Intolerancia a la Glucosa/genética , Insulina/genética , Secreción de Insulina , Células Secretoras de Insulina/citología , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Paxillin/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Talina/metabolismo , Vesículas Transportadoras/metabolismo
19.
Endocr Pract ; 18(5): e121-6, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22441009

RESUMEN

OBJECTIVE: To describe the case of a patient with an unusual plurihormonal pituitary adenoma with immunoreactivity for thyroid-stimulating hormone (TSH), growth hormone, follicle-stimulating hormone, prolactin, and α-subunit. METHODS: We report the clinical, laboratory, imaging, and pathology findings of a patient symptomatic from a plurihormonal pituitary adenoma and describe her outcome after surgical treatment. RESULTS: A 60-year-old woman presented to the emergency department with headaches, blurry vision, fatigue, palpitations, sweaty hands, and weight loss. Her medical history was notable for hyperthyroidism, treated intermittently with methimazole. Magnetic resonance imaging disclosed a pituitary macroadenoma (2.3 by 2.2 by 2.0 cm), and preoperative blood studies revealed elevated levels of TSH at 6.11 mIU/L, free thyroxine at 3.6 ng/dL, and free triiodothyronine at 6.0 pg/mL. She underwent an uncomplicated transsphenoidal resection of the pituitary adenoma. Immunostaining of tumor tissue demonstrated positivity for not only TSH but also growth hormone, follicle-stimulating hormone, prolactin, and α-subunit. The Ki-67 index of the tumor was estimated at 2% to 5%, and DNA repair enzyme O6-methylguanine-DNA methyltransferase immunostaining was mostly negative. Electron microscopy showed the ultrastructural phenotype of a glycoprotein-producing adenoma. Postoperatively, her symptoms and hyperthyroidism resolved. CONCLUSION: Thyrotropin-secreting pituitary adenomas are rare. Furthermore, recent reports suggest that 31% to 36% of adenomas may show evidence of secretion of multiple pituitary hormones. This case emphasizes the importance of considering pituitary causes of thyrotoxicosis and summarizes the clinical and pathology findings in a patient with a plurihormonal pituitary adenoma.


Asunto(s)
Hormona Folículo Estimulante/metabolismo , Hormona del Crecimiento/metabolismo , Neoplasias Hipofisarias/metabolismo , Prolactina/metabolismo , Tirotropina/metabolismo , Femenino , Humanos , Persona de Mediana Edad , Neoplasias Hipofisarias/cirugía
20.
J Biol Chem ; 287(13): 10277-10288, 2012 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-22275361

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is becoming the leading cause of chronic liver disease and is now considered to be the hepatic manifestation of the metabolic syndrome. However, the role of steatosis per se and the precise factors required in the progression to steatohepatitis or insulin resistance remain elusive. The JAK-STAT pathway is critical in mediating signaling of a wide variety of cytokines and growth factors. Mice with hepatocyte-specific deletion of Janus kinase 2 (L-JAK2 KO mice) develop spontaneous steatosis as early as 2 weeks of age. In this study, we investigated the metabolic consequences of jak2 deletion in response to diet-induced metabolic stress. To our surprise, despite the profound hepatosteatosis, deletion of hepatic jak2 did not sensitize the liver to accelerated inflammatory injury on a prolonged high fat diet (HFD). This was accompanied by complete protection against HFD-induced whole-body insulin resistance and glucose intolerance. Improved glucose-stimulated insulin secretion and an increase in ß-cell mass were also present in these mice. Moreover, L-JAK2 KO mice had progressively reduced adiposity in association with blunted hepatic growth hormone signaling. These mice also exhibited increased resting energy expenditure on both chow and high fat diet. In conclusion, our findings indicate a key role of hepatic JAK2 in metabolism such that its absence completely arrests steatohepatitis development and confers protection against diet-induced systemic insulin resistance and glucose intolerance.


Asunto(s)
Grasas de la Dieta/efectos adversos , Hígado Graso/enzimología , Intolerancia a la Glucosa/enzimología , Hepatocitos/enzimología , Janus Quinasa 2/metabolismo , Adiposidad/efectos de los fármacos , Adiposidad/genética , Animales , Grasas de la Dieta/farmacología , Hígado Graso/inducido químicamente , Hígado Graso/genética , Hígado Graso/patología , Eliminación de Gen , Intolerancia a la Glucosa/inducido químicamente , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/patología , Hepatocitos/patología , Resistencia a la Insulina/genética , Janus Quinasa 2/genética , Ratones , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...